Data Quality Management with Semantic Technologies

Este product no está disponible en la moneda seleccionada.


Christian Furber investigates the useful application of semantic technologies for the area of data quality management. Based on a literature analysis of typical data quality problems and typical activities of data quality management processes, he develops the Semantic Data Quality Management framework as the major contribution of this thesis. The SDQM framework consists of three components that are evaluated in two different use cases. Moreover, this thesis compares the framework to conventional data quality software. Besides the framework, this thesis delivers important theoretical findings, namely a comprehensive typology of data quality problems, ten generic data requirement types, a requirement-centric data quality management process, and an analysis of related work.

Detalles del producto

Fecha de Publicación
Tapa blanda
Materias IBIC:

Obtén ingresos recomendado libros

Genera ingresos compartiendo enlaces de tus libros favoritos a través del programa de afiliados.

Únete al programa de afiliados