The Lin-Ni's Problem for Mean Convex Domains

(Autor) (Autor)
& 1 more

Este product no est√° disponible en la moneda seleccionada.

Descripción

The authors prove some refined asymptotic estimates for positive blow-up solutions to $\Delta u+\epsilon u=n(n-2)u^{\frac{n+2}{n-2}}$ on $\Omega$, $\partial_\nu u=0$ on $\partial\Omega$, $\Omega$ being a smooth bounded domain of $\mathbb{R}^n$, $n\geq 3$. In particular, they show that concentration can occur only on boundary points with nonpositive mean curvature when $n=3$ or $n\geq 7$. As a direct consequence, they prove the validity of the Lin-Ni's conjecture in dimension $n=3$ and $n\geq 7$ for mean convex domains and with bounded energy. Recent examples by Wang-Wei-Yan show that the bound on the energy is a necessary condition.

Detalles del producto

Editorial
American Mathematical Society
Fecha de Publicación
Idioma
Inglés
Tipo
Tapa blanda
EAN/UPC
9780821869093

Obtén ingresos recomendado libros

Genera ingresos compartiendo enlaces de tus libros favoritos a través del programa de afiliados.

√önete al programa de afiliados